ACCELERATION PARAMETERS FOR THE AGS-BOOSTER

AD
Booster Technical Note
No. 91

ZOHREH PARSA AND EUGENE RAKA SEPTEMBER 17, 1987

ACCELERATOR DEVELOPMENT DEPARTMENT Brookhaven National Laboratory Upton, N.Y. 11973

Acceleration Parameters for the AGS-Booster

Zohreh Parsa and Eugene Raka

Brookhaven National Laboratory Upton, NY 11973

I. Introduction

This note includes the acceleration parameters for the AGS-Booster [1], assuming a uniform distribution in longitudinal phase space using the formulation given in section II. Some of the values used in our calculation were extrapolated from the tabulated information given in Reference [2]. Our results for the AGS-Booster are given in section III.

II. Summary of the Formulation

The phase area of a "stationary bucket" ($\phi_s = 0$) is given by

$$A_o = \frac{8}{h(w_s/\beta)} \sqrt{\frac{2eVE_s}{\pi h|\eta|}}$$

This is the area of one of the h buckets of the hth harmonic [2]. Where (the subscript) s refers to the synchronous particle;

eV is the maximum energy gain per turn;

E_s is the synchronous energy;

h is the harmonic number;

 β = v/c (c = velocity of light) and γ = $1/\sqrt{1-v^2/c}$ are the relativistic factors;

φ is the phase of a particle relative to r-f wave;

w is the angular frequency and

$$w_{rf} = hw_s$$

 $\eta = 1/\gamma_{tr}^2 - 1/\gamma^2 [\eta < 0 \text{ below transition } (\equiv tr)]$

$$w_s/\beta = c/2\pi R$$
 (c = 3 × 10⁸ m/s),

R = radius of the ring.

The area of the moving bucket is given by

$$A_b = A_o \alpha(\phi_s)$$

whre $\alpha(\phi_s)$ is the moving bucket factor, and the area contained within some curve $H = NH_E$ (H_E is the maximum value of H, N < 1) is given by

$$A = A_o \alpha_N(\phi_s)$$

We define the "bunching factor" to be the ratio of the peak to average particle density, for uniform distribution in longitudinal phase space. This is $1/\overline{B}$, the inverse of the bunching factor \overline{B} used in Ref. [2]. Additionally, we define

 \hat{I} = peak current,

 \overline{I}_b = average (DC component of the beam) current,

 \tilde{I}_b = rf component of the beam current,

 $P_b = \overline{I}_b \sin \phi_s$, $(P_b \equiv power)$, and

 $\Delta r = X_p \Delta p/p$ (Δr is 1/2 of the aperture taken by synchronous oscillation) where p = momentum.

III. Booster Acceleration Parameters

Injection		Ejection
Energy	200 MeV	1.5 GeV
$\beta = v/c$	0.5662	0.9220
p	0.6444 GeV/c	
RF amplitude $[V_{Rf} = \hat{V}]$	90 kV	70 kV
$\overline{\mathfrak{l}}_{\mathbf{b}}$	~3 amp	4.93 amp
Intensity (particle/bunch)	7.5×10^{12}	7.5×10^{12}
Harmonic number [h]	3	3
RF frequency [f _{Rf}]	2.48 Mhz	4.11 Mhz
Rotation frequency [f _o]	826.67 kcycle	1.37 Mhz
$\phi_{\mathbf{S}}$	2.6°	22.4°
₿	1.5 T/s	9.6 T/s
P_b	-	131.8 kW (bucket not full)
Phase space area		
Stationary bucket A _o	1.67 eVsec	5.47 eVsec
Moving bucket $\mathbf{A}_{ ext{bunch}}$ $\mathbf{A}_{ ext{bucket}}$	1.5 eVsec 1.5 eVsec	1.5 eVsec 2.46 eVsec
$lpha_1$	0.895	0.45
bucket length	320° = 60.55m	216°
bunch length	320° = 60.55m	151°
bunching factor	1.697	3.23
peak bunch current [Î]	5.1 amp	16 amp
bucket height Δp/p	0.876×10^{-2} or 3.19 MeV	0.59×10^{-2} or 12.13 MeV
\tilde{I}_b	-	8 amp
И	1	0.66
Δr	2.45 cm	
X _p	2.8m	
η	0.6376	0.09877

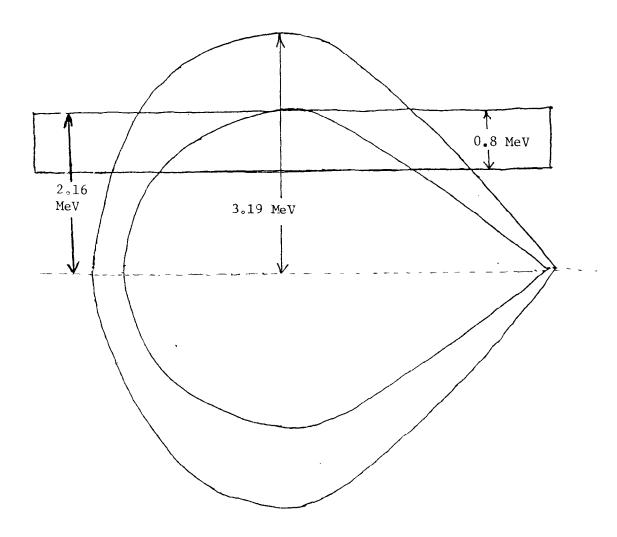


Figure 1. Booster Bucket at injection. Initial and final.

Bucket heights at injection are shown.

References

- 1. Z. Parsa, Booster Parameter List, BNL-39311; and Design Manual.
- 2. F.T. Cole and P.L. Morton, UCID 10130, ASI Theoretical/02, Sept. 21, 1964.